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Abstract

It is shown how to treat the degrees of freedom of Nielsen-Olesen vortices in the 3 + 1-
dimensional U(1) higgs model by a collective coordinate method. In the london limit,
where the higgs mass becomes infinite, the gauge and goldstone degrees of freedom
are integrated out, resulting in the vortex world-sheet action. Introducing an ultra-
violet cut-off mimics the effect of finite higgs mass. This action is non-polynomial in
derivatives and depends on the extrinsic curvature of the surface. Flat surfaces are
stable if the coherence length is less than the penetration depth. It is argued that
in the quantum abelian higgs model, vortex world-sheets are dominated by branched
polymers.
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1 Introduction

The first topological soliton found in relativistic gauge theory was Nielsen and Olesen’s
string vortex solution [1]. This solution is essentially similar to the non-relativistic
vortex found by Abrikosov [2]. Further work on the structure of non-abelian vortex
strings was done subsequently by Ezawa and Tze [3].

Shortly after vortex string solitons were discovered in relativistic gauge theories,
Förster [4] and Gervais and Sakita [5] studied their quantum dynamics. Their analyses
were performed in the limit that both the penetration depth and coherence length were
very small, and concluded that, in that limit, the vortex is described quite well by a
Nambu action.

Since Polyakov [6] discussed the addition of terms in the string action depending on
the extrinsic geometry of the string world-sheet, a number of people have attempted
to determine whether such terms exist for the Nielsen-Olesen vortex [7], [8], [9]. In
some early references [7], [8], there was a consensus that there was a rigidity term in
the action of the vortex, but the sign of the leading term differed in these two papers.
The most recent word in the literature [9] was that no extrinsic curvature dependence
seems to be present after all (or if it is present, it is numerically small). The basic
method used in references [7], [8], [9] is a version of classical perturbation theory.

The presence of terms quadratic in the extrinsic curvature tensor in the string action
[6], [10] do not appear to stabilize the “branched polymer” disease of quantum strings
[11]. This is because such terms are irrelevant in the infrared. Polyakov suggested that
this may not be so if another term, which counts the number of points in which the
world-sheet intersects itself, modulo two, is included in the action (this term had been
written down earlier by Balachandran et. al. [12]). It appears that even classically,
certain solutions are unstable [13]. Nonetheless, the presence of such terms may have
implications for cosmic strings [14], which are essentially classical Nieslen-Olesen vor-
tices (these strings are presumably coherent states with energies far above the ground
state). The mechanism for the formation of topological defects proposed by Kibble [14]
has recently been verified in the context of liquid crystal systems [15].

In this paper, the world-sheet action of the Nielsen-Olesen vortex is calculated in the
london limit, where the higgs mass becomes infinite. The calculation is equally valid
for the classical or quantum case. The method is closely related to a representation
of the lattice higgs model [16]. It is argued that the effect of a finite higgs mass is
taken into account by the introduction of an ultraviolet cut-off. This cut-off is then the
reciprocal of the coherence length. The result is an action analogous to that of Rasetti
and Regge, Davis and Shellard and of Lund [17] for liquid helium. However, this form
of the world-sheet action does not make the extrinsic geometric properties completely
clear. The result obtained disagrees with all of the previous references [7], [8] and [9].
To leading order in the extrinsic curvature, the string is found to be anti-rigid (though
evidence is found that the action is stable if higher orders are taken into account).
The result found in reference [7] was similar, but these authors found another term at
leading order, which is not revealed by the analysis here.

Effective action methods for vortex dynamics has been criticized by Arodz and
Wegrzyn [18]. They pointed out that integrating out some degrees of freedom leads
to a non-local action, which may not correctly capture the features of the original
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model. The essential difficulty is due to the fact that green’s functions depend on the
initial and final conditions. This problem is circumvented in this paper by going to
euclidean space, and considering finite string manifolds. The basic results (stability
for penetration depth greater than coherence length, no scaling of the string tension in
the quantum theory) can then be carried back to Minkowski space.

The action of the vortex in the london limit is non-polynomial in derivatives on the
world-sheet (thus non-local). While a proof is still lacking, this action appears to be
stable. Small fluctuations about flat surfaces are examined. The action of a long thin
tube is calculated, and it is argued that in the quantum theory branched polymers will
dominate the world-sheet. This means that the vortex string tension probably does
not scale for any choice of couplings of lattice electrodynamics coupled to a higgs field.

2 Collective Coordinates

The starting point is the abelian higgs model in euclidean space, with lagrangian

L =
1

4e2
FµνF

µν +
1

2
(∂ν + iAν)φ

∗(∂ν − iAν)φ + λ(φ∗φ − v2)2 . (1)

As Nielsen and Olesen showed [1], the equations of motion of (1) admit stable vortex
string solutions, similar to those of Abrikosov [2], provided that the higgs mass mH =
2
√

2λv is greater than the vector boson mass mV B = ev. Recall that the coherence
length is ξ = m−1

H and the penetration depth is D = m−1
V B.

It is convenient to parametrize the higgs field φ by density and phase variables,
similar to those of Tomonaga, Bohm et. al. [19], and Gervais and Sakita [5],

φ(x) = [v + h(x)] e
i
∫

x

−∞

Vµ(y) dyµ

. (2)

The integral is path dependent, but its exponential is not. The density field h is
restricted by h ≥ −v. The field Vµ(x) is the superfluid velocity [19]. Under a gauge
transformation δAµ = ∂µχ, δVµ = ∂µχ and δh = 0. This parametrization is essentially
the same as that of Gervais and Sakita [5].

The field Vµ is single-valued, but
∫ x
−∞

Vµ(y) dyµ is multi-valued. The line integral
of Vµ around a closed path is an integer multiple of 2π; the integer is the (oriented)
number of vortex world-sheets the path winds around in four dimensions. This fact
expresses Π1(U(1)) = Z. If the union of all vortex world-sheets is the (possibly disjoint)
oriented two-dimensional manifold Σ, Stokes’ theorem implies

∂αVβ − ∂βVα = 2π
∫

Σ
dσ1 ∧ dσ2 δ4(x − z(σ)) ǫαβρτ

∂zρ

∂σ1

∂zτ

∂σ2
n(σ) , (3)

where σ1 and σ2 are the world-sheet (base space) coordinates, zρ are the space-time
(target space) coordinates and n(σ) is the vorticity (which is a constant integer on each
connected component of Σ).

Writing the lagrangian (1) in terms of the collective fields (2) and the vortex degrees
of freedom (3) gives, with n(σ) = 1,

L =
1

4e2
FµνF

µν +
1

2
∂νh∂νh + λh2(h + 2v)2 +

v2

2
(Aµ − Vµ)(A

µ − V µ)
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+
1

2
h(h + 2v)(Aµ − Vµ)(A

µ − V µ)

+
i

2
ǫµναβ Aµν [∂αVβ − ∂βVα − π

∫

Σ
dσa ∧ dσb δ4(x − z(σ)) ǫαβρτ

∂zρ

∂σa

∂zτ

∂σb
]

+ iω(h + v)
∫

Σ
dσ1 ∧ dσ2 δ4(x − z(σ)) . (4)

The new antisymmetric tensor field Aµν and scalar field ω are Lagrange multipliers.
This formalism is not convenient for all purposes because of the restriction h ≥ −v.
The last term enforces the condition that φ = 0 on the world-sheet. Notice that if
the vortex degrees of freedom, z(σ) are integrated out in the functional integral, no
new terms depending on the fields h or Vµ are induced in the lagrangian. Thus (4)
is completely equivalent to (1). In the quantum theory, the measure on the world-
sheet field z(σ) must be diffeomorphism invariant and divided by the volume of the
diffeomorphism group.

3 The Higgs Mass as a UV Cut-off

The lagrangian (4) is not easy to work with. The chief goal of this article is to integrate
out the fields in the target space, leaving behind the action of z(σ) in the base space.
However this goal is quite difficult with (4). Fortunately the difficulty disappears in the
london limit, λ → ∞. In the usual way of taking this limit, the penetration depth, D,
is fixed, while the coherence length, ξ, tends to zero. Now, if the system is regularized
by an ultraviolet cut-off Λ, the coherence length will not vanish as the higgs mass is
increased, but instead tend to Λ−1. Thus, by putting such a cut-off into the theory,
one does not expect the world-sheet action to be very different from that of the usual
abelian higgs model. This observation is similar to that of Kirkman and Zachos, who
noted that the energy density away from the core of a magnetic monopole is determined
only by one length scale, namely the vector boson mass, if the higgs mass is very large
[20] Furthermore, it will become clear that there is a self-energy divergence in the string
tension (just as the electromagnetic self-energy of an electron is divergent), which needs
to be regularized by a non-zero coherence length.

The lagrangian in the london limit is

L =
1

4e2
FµνF

µν +
v2

2
(Aµ − Vµ)(Aµ − V µ)

+ iǫµναβ Aµν∂αVβ − π i Aµν

∫

Σ
dσa ∧ dσb δ4(x − z(σ))

∂zµ

∂σa

∂zν

∂σb

+ µ0

∫

Σ
d2σ

√

det g , (5)

where gab is the induced metric,

gab = ea · eb =
∑

µ

eµ
a e

µ
b . (6)

and ea is the vector field
eµ

a = ∂az
µ(σ) . (7)
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The last term is a Nambu action, which comes about because the energy density of the
higgs field between the vortex core (where h = −v) and the surrounding vacuum region
(where h = 0) is non-zero. The coefficient of this term, µ0, depends on the coherence
length in a nontrivial way.

4 Duality

The next step is to integrate out everything but z(σ) from the functional integral
with action (5). There is nothing fancy about doing this. The result is precisely that
obtained by eliminating the fields from the equations of motion, since (5) is at most
quadratic in the fields in euclidean space. As an optional intermediate step, one can
integrate out only Aµ and vµ leaving behind only the antisymmetric tensor field Aµν

as well as zµ. The field strength Fαµν is the exterior derivative of Aµν . The lagrangian
of this system can be written

L =
1

12v2
FαµνF

αµν +
e2

2
(Aµν − ∂µBν + ∂νBν)(A

µν − ∂µBν + ∂νBν)

− π i Aµν

∫

Σ
dσa ∧ dσb δ4(x − z(σ))

∂zµ

∂σa

∂zν

∂σb

+ µ0

∫

Σ
d2σ

√

det g . (8)

This lagrangian has the gauge invariance δAµν = ∂µχν − ∂νχν , δBµ = χµ. A unitary
gauge exists for which Bµ = 0. Equation (8) is the dual lagrangian to (5). It was found
by precisely the same technique used to find the Kramers-Wannier dual of a lattice
field theory or spin system (see for example [21]). The duality of gauge-invariant fields
in more than two dimensions was first understood by Wegner (who only considered
Z2 invariant lattice models. However, Wegner’s method is essentially the same as that
used for continuum abelian systems) [22]. The first explicit discussion in the literature
of the duality of continuum gauge fields coupled to continuum scalar fields appears
to be that of Sugamoto [23]. The coupling of antisymmetric tensor gauge fields to
strings was first investigated by Kalb and Ramond [24]. Kalb and Ramond’s model
was rederived and argued to describe vortices in a relativistic superfluid by Lund and
Regge [25]. A study of the radiation of goldstone bosons by global cosmic strings in the
Kalb-Ramond formulation was made by Vilenkin and Vachaspati [26]. Nambu made
some suggestions concerning quark confinement and strings by introducing a mass in
the Kalb-Ramond model [27] and a model of electric strings in QCD was developed
using a non-abelian generalization of antisymmetric tensor gauge fields on the lattice
[28]. Such non-abelian fields were also discussed by Nepomechie [29]. It was shown that
strings are confined by dynamical membranes in Kalb-Ramond theories with magnetic-
monopole instantons, both analytically [30] and numerically [31].

The propagator of the massive antisymmetric tensor gauge field in the unitary gauge
can be written

S(x − y)µν;αβ =
v2

2(−∂2 + e2v2)
(δµ[αδβ]ν − 2

e2v2
∂[µδν][α∂β]) δ4(x − y) (9)
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5 The World-Sheet Action

The easiest way to find the world-sheet action is by taking unitary gauge Bµ = 0 and
integrating out Aµν . A string tension will be induced by virtue of the exponential
fall-off of the propagator [27], [28]. However, the full induced action has not heretofore
been worked out.

Before proceeding further, it is neccesary to say a bit about the geometry of two-
dimensional manifolds embedded in R4. Define the antisymmetric tensor field on the
world-sheet

tµν =
1√

2 det g
(eµ

1 eν
2 − e

µ
2 eν

1) , (10)

which will be called the tangent plane field. The tangent plane field was first discussed
by Balachandran et. al. [12] and by Polyakov [6]. Notice that this field satisfies
tµνt

µν = 1. There are two four-component normal vectors nk, k = 3, 4, satisfying
nk · ea = 0 and nk · nj = δkj. The derivative of the tangent vector ea is given by

∂aea = Γc
ab ec + Kk

ab nk , (11)

where Γc
ab is the usual affine connection and Kk

ab is the second fundamental form or
extrinsic curvature tensor.

The tangent plane field satisfies

∂at
αβ =

1√
2 det g

(Kk
a1n

µ
ke

ν
2 − Kk

a2n
µ
ke

ν
1 − Kk

a1n
ν
ke

µ
2 + Kk

a2n
ν
ke

µ
2 ) , (12)

and by virtue of Kk
ab = Kk

ba,

∂αtαβ =
∑

α

gac eα
c ∂at

αβ = 0 . (13)

The euclidean space R4 can be reparametrized by the new coordinates σ1, σ2, Ω3

and Ω4

xµ = xµ(σ, Ω) = zµ(σ) + Ωkn
µ
k(σ) , (14)

though such a parametrization does not assign unique coordinates to each point of R4.
The manifold consisting of the disjoint union of a covering of R4 defined in this way is
called the normal bundle of the manifold Σ. The normal bundle has base space Σ and
each fiber is isomorphic to R2. This parametrization has been used before by Gervais
and Sakita for strings with small penetration depth and coherence length [5] and by
Mazur and Nair in their discussion of QCD string actions [32].

Points in R4 which are close enough to Σ (i.e. for which (Ω3)2 +(Ω4)2 is sufficiently
small) can be uniquely parametrized by (14), and the metric in the new coordinates is

Gab(σ, Ω) =
∑

µ

∂xµ

∂σa

∂xµ

∂σb
, Gak(σ, Ω) =

∑

µ

∂xµ

∂σa
n

µ
k , Gkj(σ, Ω) = δkj . (15)

Notice that on the base manifold Σ, the 2 × 2 sub-block Gab of this metric reduces to
the induced metric, Gab(σ, 0) = gab. The delta function of R4 in these coordinates is

δ4(xµ(σ, Ω) − xµ(ξ, Π)) =
1√

det G
δ2(σ − ξ) δ2(Ω − Π) =

1√
det g

δ2(σ − ξ) δ2(Ω − Π) .

(16)
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which is needed to obtain the propagator (9) in the new coordinate system, σ1, σ2, Ω3,
Ω4.

One more formula is needed to obtain the world-sheet action in managable form.
For any differential operator A which commutes with Ω3 and Ω4,

∫

d2Ω δ2(Ω) (−
4

∑

k=3

∂2

∂(Ωk)2
+ A)−1 δ2(Ω) =

1

4π

∫

∞

0
du (u + A)−1 . (17)

However, the right-hand-side is ultraviolet divergent. The divergence can be regularized
by introducing an ultraviolet cut-off through a subtraction procedure. If M is some
large number with the dimensions of inverse centimeters, the regularized version of (17)
is

REG [
∫

d2Ω δ2(Ω) (−
4

∑

k=3

∂2

∂(Ωk)2
+ A)−1 δ2(Ω)]

=
1

4π

∫

∞

0
du [(u + A)−1 − (u + M2 + A)−1] =

1

4π
log

A + M2

A
. (18)

The world-sheet action obtained from (8) is

I[z] =
π2

4

∫

Σ
d2σ

∫

d2Ω
∫

Σ
d2ξ

∫

d2Π
√

det g(σ) tµν(σ) δ2(Ω)

× S(x(σ, Ω) − x(ξ, Π))µν;αβ
√

det g(ξ) tαβ(ξ) δ2(Π) . (19)

This form, equation (19), of the world-sheet action is essentially analogous to the action
discussed by Rasetti and Regge, Davis and Shellard and Lund for superfluid helium
[17]. Using (9) together with (16) for the propagator, as well as (13) and (18), this
simplifies to

I[z] =
πv2

4

∫

Σ
d2σ

√

det g tµν [log(1 − ∆

Λ2
) − log(1 − ∆

e2v2
)] tµν

+ [µ0 + 4πv2 log(
Λ2

e2v2
)]

∫

Σ
d2σ

√

det g , (20)

where ∆ is the covariant Laplacian,

∆ =
1√

det g
∂a gab

√

det g ∂b , (21)

and Λ is defined by M2 = Λ2 + e2v2. The action (20), which is the main result of
this paper, will henceforth be referred to as the Nielsen-Olesen action. It is not a local
action, for it is non-polynomial in derivatives.

Physically, one can understand Λ as cutting off the high-momentum modes of the
spin-1 boson field (formally, this has been viewed as the dual antisymmetric tensor
field, rather than as a vector field). Thus, it performs the same function as the higgs
mass. Recall that the role of the higgs field is to “soften” the high-energy exchange of
massive spin-1 bosons. The cut-off Λ is the inverse coherence length, ξ−1, and its role,
as far as vortices are concerned, is the same as that of a finite-mass higgs field.
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In the quantum theory there is another term which must be added to (20); the
Liouville action, which has no extrinsic curvature dependence [33].

The validity of the Nielsen-Olesen action (20) obtained above breaks down as soon
as any eigenvalue of the matrix Kk exceeds the reciprocal of the penetration depth
D−1 = ev. If this is the case, the normal bundle is not locally isomorphic to R4 a
distance D away from the surface Σ.

Using (12), the Nielsen-Olesen action (20) can be expanded in powers of the second
fundamental form. To leading order

I[z] ≈ −πv2

4
(

1

e2v2
− 1

Λ2
)

∫

Σ
d2σ

√

det g
∑

k

gabgedKk
abK

k
ed

+ [µ0 + 4πv2 log(
Λ2

e2v2
)]

∫

Σ
d2σ

√

det g , (22)

hence the string appears to be anti-rigid at this order. One might therefore guess that
the Nielsen-Olesen action is unstable. It will be shown, at least for a special case, that
the Nielsen-Olesen action really is stable, so long as the penetration depth D is greater
than the coherence length ξ. However, no general proof of stability will be given here.
Even for actions with a positive quadratic term in K, some simple classical solutions
are known to be unstable [13]. In any case, (22) is useless, though (20) is not.

In the next section it will be shown that a wave instability occurs if the penetration
depth D = (ev)−1 is smaller than the coherence length, ξ, which is equal to the
inverse cut-off Λ−1. Otherwise, the Nielsen-Olesen action is stable, at least around
large flat world-sheets. If D < Λ−1, the vortex core, with < φ >= 0, begins to
fluctuate throughout the volume, destroying the condensate, where |φ| = v. Thus, the
superconductor type-II can no longer tolerate the entry of magnetic flux and becomes
type-I. There is a line of phase transitions in the D vs. Λ−1 plane at D = Λ−1,
seperating these two regimes of superconductivity.

The string tension diverges in the limit of infinite Λ (just as the classical electron
self-energy diverges if the electron radius is set to zero). Therefore, in this limit, the
Nielsen-Olesen action is dominated by the Nambu term.

In references [7], [8], [9], the ratio of the coherence length and the penetration depth
is fixed, leaving a single length scale, ǫ. Perturbation theory is then done about ǫ = 0.
The reader can see that at Λ = ∞ and e2v2 = ∞ there is no extrinsic curvature
dependence. If one takes Λ = ǫ−1 and ev = (Cǫ)−1 and expands the Nielsen-Olesen
action (20), the result is essentially (22).

6 Stability of Flat Surfaces

While the question of stability will not be completely settled here, it appears likely
that the Nielsen-Olesen action is stable, unless the penetration depth is less than the
coherence length. In this section this will be shown for the special case of a flat surface.

By the implicit function theorem, it is always possible (at least locally) to impose
the gauge z1 = σ1, z2 = σ2. A nearly flat surface, can be described by

z1 = σ1 , z2 = σ2 , z3 = f 3(σ) , z4 = f 4(σ) . (23)

8



Defining the Fourier transform of the fluctuation field, f , by

fk(σ) =
∫

d2p

(2π)2
fk(p) e−i p·σ , (24)

the Nielsen-Olesen action (20) is, to quadratic order

I[z] = const. +
πv2

8

∫

d2p

(2π)2

∑

k

fk(p)fk(−p) p2 [log
p2 + Λ2

p2 + e2v2
+ 2µ0] , (25)

The frequency of the fluctuations is therefore positive for all p, provided that the
coherence length ξ = Λ−1 is less than the penetration depth D = (ev)−1. Otherwise,
there is an instability signaling the onset of type-I superconductivity.

7 The Branched Polymer Phase of the Abelian Higgs

Model

An obvious question is whether the abelian higgs model has a non-trivial string, with
finite tension, after renormalization. It will be argued here that this is not the case.
The conclusion is perhaps not surprising, for a theory which is not asymptotically free
in the ultraviolet and which is likely to be infrared free. The argument hinges on the
fact that the action of a world-sheet tube monotonically decreases as a function of the
radius.

The main limitation of the arguments presented in this section is that the Liouville
action [33] is not being considered. However, the Liouville action has no extrinsic
curvature dependence, and is unlikely to stabilize the string.

Consider a tube of radius r. Take σ1 ǫ [0, 2πr) and σ2 ǫ (−L
2
, L

2
) where L >> r.

The world-sheet is then described by

z1(σ) = cos
σ1

r
, z1(σ) = sin

σ1

r
, z3(σ) = σ2 , z4(σ) = 0 . (26)

The area of the world-sheet is A = 2πrL. The action of this configuration can be
worked out from (20). The result is

I[z] = µ(r)A = [µ0 +
πv2

4
log(

Λ2 + r−2

e2v2 + r−2
)]A . (27)

Notice that the action of a thin tube (it should be assumed that r > D for the Nielsen-
Olesen action (20) to be valid) is proportional to its length. Therefore, in the euclidean
quantum field theory, the usual energy versus entropy arguments for random surfaces
[11] imply that branched polymers dominate the world-sheet. This means that the
quantum abelian higgs model vortex-world-sheet is dominated by branched-polymer
configurations, and the vortex string tension will not scale in the limit that the cut-off
is removed.

Not all the details of the quantization of the world-sheet have been taken into
account in this section. In particular, the Liouville action has been ignored. However,
it appears unlikely that the dominance of branched polymers will be affected by the
inclusion of the Liouville action. Therefore the Nielsen-Olesen vortex almost certainly
does not exist as a quantum soliton of the field theory.
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8 Discussion

In this paper, the full world-sheet action of a Nielsen-Olesen vortex in an abelian higgs
model was obtained, where the effect of a finite higgs mass was approximated by the
introduction of an ultraviolet cut-off. In particular, the extrinsic curvature dependence
was found. The action was argued to be stable, provided that the penetration depth is
greater than the coherence length. It is almost certainly the case that the vortex world-
sheets of the quantum field theory are dominated by branched polymer configurations,
implying that no scaling limit exists in which the renormalized string tension is finite.
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Note Added

The world-sheet action of a non-relativistic vortex can be obtained using similar meth-
ods. After this paper appeared as a preprint, the author discovered that a number
of people had recently studied such Abrikosov vortex strings using dual Kalb-Ramond
fields [34], [35]. In particular, the action analogous to (8) (originally found in [17])
has been obtained [35] in this way. The authors of reference [35] intentionally dropped
certain terms containing time derivatives, which were not needed for their purposes.
Including these terms, the author has reduced the action for a nonrelativistic vortex
to an action in which the dependence on the curvature of the vortex is made explicit,
using the normal-bundle parametrization discussed here. It can then be shown that
for this case as well, flat surfaces are stable provided the coherence length is less than
the penetration depth.

Recently, Sato and Yahikozawa calculated the extrinsic curvature dependence of the
relativistic Nielsen-Olesen world-sheet to second order in K, obtaining a result similar
to (22) [36]. I would like to thank them for discussions concerning their work.
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